Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Care ; 28(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166968

RESUMO

Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.


Assuntos
Músculo Esquelético , Músculos Respiratórios , Humanos , Eletromiografia , Músculos Respiratórios/fisiologia , Músculo Esquelético/fisiologia
2.
Crit Care ; 27(1): 268, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415253

RESUMO

BACKGROUND: Individualised optimisation of mechanical ventilation (MV) remains cumbersome in modern intensive care medicine. Computerised, model-based support systems could help in tailoring MV settings to the complex interactions between MV and the individual patient's pathophysiology. Therefore, we critically appraised the current literature on computational physiological models (CPMs) for individualised MV in the ICU with a focus on quality, availability, and clinical readiness. METHODS: A systematic literature search was conducted on 13 February 2023 in MEDLINE ALL, Embase, Scopus and Web of Science to identify original research articles describing CPMs for individualised MV in the ICU. The modelled physiological phenomena, clinical applications, and level of readiness were extracted. The quality of model design reporting and validation was assessed based on American Society of Mechanical Engineers (ASME) standards. RESULTS: Out of 6,333 unique publications, 149 publications were included. CPMs emerged since the 1970s with increasing levels of readiness. A total of 131 articles (88%) modelled lung mechanics, mainly for lung-protective ventilation. Gas exchange (n = 38, 26%) and gas homeostasis (n = 36, 24%) models had mainly applications in controlling oxygenation and ventilation. Respiratory muscle function models for diaphragm-protective ventilation emerged recently (n = 3, 2%). Three randomised controlled trials were initiated, applying the Beacon and CURE Soft models for gas exchange and PEEP optimisation. Overall, model design and quality were reported unsatisfactory in 93% and 21% of the articles, respectively. CONCLUSION: CPMs are advancing towards clinical application as an explainable tool to optimise individualised MV. To promote clinical application, dedicated standards for quality assessment and model reporting are essential. Trial registration number PROSPERO- CRD42022301715 . Registered 05 February, 2022.


Assuntos
Pulmão , Respiração Artificial , Humanos , Cuidados Críticos , Fenômenos Fisiológicos Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...